US009075670B1

a2z United States Patent (10) Patent No.: US 9,075,670 B1

Nick et al. 45) Date of Patent: Jul. 7, 2015
(54) STREAM PROCESSING WITH CONTEXT (56) References Cited
DATA AFFINITY
U.S. PATENT DOCUMENTS
(71) Applicant: Pivotal Software, Inc., Palo Alto, CA 7,114,011 B2 9/2006 Buchetal.
(US) 7,882,257 B2 2/2011 Kerr et al.
8,374,986 B2 2/2013 Indecketal.
8,655,956 B2 2/2014 Park et al.
(72) Inventors: Jeffrey Mark Nick, Milford, MA (US); 8,768,612 B2 7/2014 Bouillet et al.
David Russell Brown. San Marcos. CA 2012/0291049 Al* 11/2012 Parketal. ..o 719/318
s ’ ’ 2013/0346970 Al 12/2013 Lamet al.
(US); Vinesh Prasanna Manoharan, 2014/0082178 Al 3/2014 Boldyrev et al.
Buckinghamshire (GB)
FOREIGN PATENT DOCUMENTS
(73) Assignee: Pivotal Software, Inc., Palo Alto, CA
(US) WO 2013/153027 10/2013
* cited by examiner
(*) Notice: Subject to any disclaimer, the term of this Primary Examiner — Andy Ho
patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm — Fish & Richardson P.C.
U.S.C. 154(b) by O days. (57) ABSTRACT
Methods, systems, and apparatus, including computer pro-
(21) Appl. No.: 14/450,178 grams encoded on computer storage media, for stream pro-
cessing with contextual data affinity. One of the methods
(22) Filed: Aug. 1, 2014 includes receiving an event at a computing node of a stream
’ processing system that includes one or more computing
nodes and data representing a topology of functional mod-
(51) Int.CL ules. At a particular functional module of the topology, an
GO6F 13/00 (2006.01) operation that requests access to context data related to the
GO6F 9/54 (2006.01) event is determined based on a data attribute of the event. The
(52) US.Cl context data is partitioned among the one or more computing
NS nodes. Context data related to the event is obtained from the
CPC . GO6F 9/542 (2013.01) computing node. The operation of the particular functional
(58) Field of Classification Search module is processed using the context data, and a modified
CPC ... GOG6F 9/542; HO6L 29/06027; HO6L event is generated. The modified event is provided to a sub-
20/08072 sequent functional module according to the topology of func-
USPC e 719/318;709/201, 231 tional modules.

See application file for complete search history.

200

20 Claims, 6 Drawing Sheets

User Device

232

Management Node

Output
218

224 A
Context data

Context data

224B

224N
Context data

226

Y

® ke
222| ~ 222

220A Node A 2208

Node B 220N Node N

Routed event
212

Routed event
214

Routing System

240°

202
Raw event stream

US 9,075,670 B1

Sheet 1 of 6

Jul. 7, 2015

U.S. Patent

1 "OId

(174

oLl

JOpIAOId 92INIBS

(773 SUONB2IUNWIWO23|9 |
INdinO
woIsAg i
Bunndwo) weasng Swea.ls
JUSAD MEY

091
HJOMIAN

U.S. Patent Jul. 7, 2015 Sheet 2 of 6 US 9,075,670 B1
200
User Device
232
Management Node
230
Output Output
216 218
224 A 224 B 224 N
Context data Context data Context data
(6\/ :E) ‘_N E) J
B jj‘:f K: \J
3 D: D
226 B B © (
222 - 222 - 222
220 A Node A 220 B Node B 220 N Node N
A
Routed event Routed event
212 214
Routing System
2405
202S

Raw event stream
210

FIG. 2

US 9,075,670 B1

Sheet 3 of 6

Jul. 7, 2015

U.S. Patent

0ce

User Device

NSPON NOIE

¢ Old

A%

/
{
Nge”

(a)
N

O)
AR
(3 €= €=

~

B]Ep 1X81U0D
NvLE

gd9pPON dO0l€

e

. td
(@) Z>/
_ (v)
(3)€=2)

B1Ep 1X81U0D
avie

VOPON VOlLE
A%
(8)

(a)

90¢
JUsAg

(v
(3€=0)

o

BlEp 1X8)U0D
Y vlLE

v0€

Routing system

c0¢
weaJjs

JUSAS MBY

T

U.S. Patent Jul. 7, 2015 Sheet 4 of 6 US 9,075,670 B1

Receive definition of stream computing

402
topology and associated context data ~

Y

Preload context data into operational memory ~_§" 404

Y
Deploy functional modules of stream

computing topology on each of the computing ~_§ 406
nodes

Y
Process events according to stream

computing topology and associated context ~§ 408
data

FIG. 4

U.S. Patent Jul. 7, 2015 Sheet 5 of 6 US 9,075,670 B1

Receive event at a computing node —§ 502

A

Process the event according to a sequence of
functional modules of a stream processing ~§ 504
topology

|

Process the event at a functional module that
requests context data for the event

506

A

Obtain the requested context data from

508
operational memory of the computing node ~

Process the operation using the context data ~.§ 570

Y

Provide the event to a subsequent functional

512
module ~

FIG. 5

U.S. Patent Jul. 7, 2015 Sheet 6 of 6 US 9,075,670 B1

Process an event at a.functional module on a 602
computing node
Y
Modify the data affinity hint included in the 5604
event
Y
Provide the event to a different computing 606
node that stores context data for the event

FIG. 6

US 9,075,670 B1

1
STREAM PROCESSING WITH CONTEXT
DATA AFFINITY

BACKGROUND

This specification relates to stream computing.

Stream computing refers to systems and techniques for
continually processing unbounded sequences of data objects
in real time, i.e., a sequence that is not limited to a predeter-
mined number of data objects or rate of arrival of data objects;
such a sequence is referred to as a stream. For example, a
stream of objects may represent page requests received by a
web site, telemetry events from sensors, or microblog mes-
sages posted by users. Stream processing systems can per-
form a variety of tasks, including providing immediate search
results as data objects are found and continually processing
new data objects as they are received.

SUMMARY

This specification describes how a system can process
events in a stream processing system according to data affin-
ity with context data partitioned across multiple computing
nodes. The context data can be stored in fast operational
memory of each computing node, resulting in high-through-
put, low-latency processing of event streams that require con-
text information.

In general, one innovative aspect of the subject matter
described in this specification can be embodied in methods
that include the actions: receiving an event at a computing
node of a stream processing system, wherein the stream pro-
cessing system comprises one or more computing nodes and
data representing a topology of functional modules, wherein
each functional module defines one or more operations to be
performed on an event and an output destination for the event,
and wherein all functional modules of the stream processing
topology are installed on each of the computing nodes; at a
particular functional module of the topology, determining
that an operation requests access to context data related to the
event based on a data attribute of the event, wherein the
context data is partitioned among the one or more computing
nodes, and wherein each partition of context data is stored in
operational memory of the respective computing node;
obtaining, from the operational memory of the computing
node, the context data related to the event; processing the
operation of the particular functional module using the con-
text data obtained from the operational memory of the com-
puting node including generating a modified event; and pro-
viding the modified event to a subsequent functional module
according to the topology of functional modules.

These and other embodiments can each optionally include
one or more of the following features. Each functional mod-
ule of the stream processing topology executes within a same
operating system process of the computing node of the stream
processing system. Processing the operation of the particular
functional module using the context data comprises modify-
ing the context data in operational memory of the computing
node. The actions include receiving a different second event
at the computing node of the stream processing system; at the
particular functional module, determining that the operation
for the second event requests access to the modified context
data related to the second event based on a particular data
attribute of the second event; obtaining, from the operational
memory of the computing node, the modified context data;
and processing the operation of the particular functional mod-
ule using the modified context data obtained from the opera-
tional memory of the computing node. The actions include

10

15

20

25

30

35

40

45

50

55

60

65

2

receiving a different second event at the computing node of
the stream processing system; at the particular functional
module, determining that the operation requests access to
context data related to the different event based on a particular
data attribute of the different event; determining that the
requested context data is maintained in a partition stored on a
different computing node; and providing the second event to
the particular functional module the different computing
node. The actions include maintaining, by the computing
node, modules for the functional modules of the stream pro-
cessing topology and the context data within a same operating
system process. The actions include receiving, at the stream
processing system, the event; determining a computing node
maintaining a partition of context data related to the event;
and routing the event to the determined computing node.
Determining a computing node comprises: processing an
operation to modify a data affinity hint in the event; determin-
ing, from the modified data affinity hint, an identifier of a
partition of context data; and determining, from the identifier
of'the partition of context data, the different computing node
storing the partition of context data in operational memory.

Particular embodiments of the subject matter described in
this specification can be implemented so as to realize one or
more of the following advantages. A stream processing sys-
tem can reduce the latency for accessing context data for an
event by partitioning the context data into operational
memory of the stream processing system. A system can fur-
ther reduce latency by executing the stream processing opera-
tions in a same operating system process as a process main-
taining the context data in operational memory. In this way
the stream processing system can reduce latency due to data
locking issues, race conditions, and by not requiring indi-
vidual computing nodes in the stream processing system to
call an outside database for context data. Additionally the
stream processing system can provide real-time mediation
capabilities.

The details of one or more embodiments of the subject
matter of this specification are set forth in the accompanying
drawings and the description below. Other features, aspects,
and advantages of the subject matter will become apparent
from the description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of an example system.

FIG. 2 is a diagram of an example stream processing sys-
tem that includes a stream processing node.

FIG. 3 illustrates an event being processed by an example
stream processing system.

FIG. 4 is a flow chart of an example process for defining a
stream computing topology and associated context data.

FIG. 5 is a flow chart of an example process for processing
events by a stream processing system.

FIG. 6 illustrates an example process of providing an event
to a different computing node.

Like reference numbers and designations in the various
drawings indicate like elements.

DETAILED DESCRIPTION

This specification describes techniques for high through-
put, low-latency processing of events by a stream processing
system. In one example environment, a stream processing
system receives data objects that each represents a unit of
activity on a telecommunications network, e.g., a user
attempting to send a short message service (SMS) message or
a user initiating a phone call. In this specification, an event is

US 9,075,670 B1

3

a data object having one or more data attributes and repre-
senting a unit of activity, and an event stream is an unbounded
sequence of events received by a stream processing system.

In particular, a stream processing system can use context
data stored in memory to effect the processing of events.
Context data is pre-existing data related to an event in a
stream of events and includes data that does not occur within
data attributes of the event itself. For example, an event that
represents a phone call being initiated may include a data
attribute that includes a user’s phone number. However, the
event would typically not include other information about the
user, e.g., a user’s home address. Rather, the user’s home
address is stored and mutated in operational memory by the
stream processing system for low-latency access.

FIG. 1is a diagram of an example system 100. The system
100 includes a telecommunications service provider 110 in
communication with a network 160 of telecommunications
elements 135, 145, and 155, e.g., cellular service towers or
telemetry sensors. Each of the telecommunications elements
135, 145, and 155 provides telecommunications service to
user devices over respective geographic areas 130, 140, 150,
which are typically partially overlapping.

The telecommunications elements 135, 145, and 155 com-
municate over, and are part of, the network 160. The network
160 can include, for example, a wireless cellular network, a
wireless local area network (WLAN) or Wi-Fi network, a
Second Generation (2G), Third Generation (3G), or Fourth
Generation (4G) network, or any other appropriate telecom-
munications network. The network 160 may also include a
wired Ethernet network, a private network such as an intranet,
a public network such as the Internet, or any appropriate
combination of these networks.

The telecommunications elements 135, 145, and 155 can
provide raw event streams 105 representing different aspects
of communications between user devices over the network
160. The telecommunications service provider 110 can take
advantage of a stream computing system 120 that processes
the raw event streams 105 to obtain real-time output 115 for
the telecommunications service provider 110. The stream
computing system 120 includes multiple computing nodes
each implementing a stream processing framework in which
each node of the stream processing system can access context
data stored in fast, operational memory.

In computing the output 115 for the telecommunications
service provider 110, the stream computing system 120
obtains context data from operational memory for each event,
e.g., user account information. The stream computing system
120 includes multiple computing nodes that each store con-
text data related to events. The stream computing system 120
provides each event to a computing node that is likely to store
context data for the event. If during processing an event needs
context data not stored in the computing node it’s located in,
the stream computing system 120 provides the event to a
different computing node storing the relevant context data. In
this way the computing node does not have to make a time-
consuming call to an outside database storing context data,
obtain the context data, lock the context data to stop modifi-
cation of it, and store the context data upon the completion of
the use of the context data by the computing node.

For instance, a raw event stream 105 can represent users
initiating phone calls, and the context data related to a par-
ticular event can identify a user account of a communications
device, e.g., acell phone, that placed each call. The output 115
can be, for example, whether a recipient of the call is identi-
fied by the telecommunications service provider 110 as a
friend or family member of the user initiating the phone call,
which may affect pricing for the phone call. Since the output

10

15

20

25

30

35

40

45

50

55

60

65

4

115 is computed at a rapid speed, the stream computing
system 120 stores context data for each event in the comput-
ing node that also computes the output 115 for the respective
event.

Some techniques in this specification will be described in
the specific context of classifying events in a telecommuni-
cations network. However, such techniques can be employed
by any appropriate stream processing system. For example a
wind farm having hundreds or thousands of wind turbines can
generate millions of events each second. In processing an
event from a particular wind turbine, the recent, e.g., last
several minutes, of events received from a particular wind
turbine and its neighbors may be required to accurately com-
pute changing wind conditions in real-time. A stream com-
puting system 120 can process the received events in com-
puting nodes to constantly tune the parameters of the wind
farm according to context data related to each received event.
The stream computing system 120 can thus detect dangerous
trends in real time and react accordingly, e.g., shutting down
turbines to avoid costly damage or destruction.

FIG. 2 is a diagram of an example system 200 that includes
a stream processing system 202. The stream processing sys-
tem 202 includes multiple stream processing nodes 220A-N.
The stream processing nodes 22A-N implemented using vir-
tual or physical computing nodes, e.g., virtual nodes installed
as respective virtual machines on one or more computer sys-
tems, or virtual nodes installed as respective modules of an
operating system on one or more computer systems. In some
other implementations each stream processing node can be a
respective physical computing node, e.g., a computer system.
Although only three nodes are shown, the stream processing
system 202 can include hundreds or thousands of stream
processing nodes.

The stream processing system 202 also includes a routing
system 240, which is in communication with the stream pro-
cessing nodes 220A-N over one or more communications
networks, e.g., a local area network or a wide area network,
e.g., the Internet. The routing system 240 can be implemented
as a separate system of one or more computers or as part ofa
particular stream processing node.

The stream processing nodes 220A-N receive events, pro-
cess the events, and provide output, e.g., output 216 and 218,
to a management node 230. Additionally, the stream process-
ing system 202 is in communication with a user device 232.
Each of the management node 230 and the user device 232
can be implemented on one or more computers, e.g., servers,
desktop computers, or other stationary or portable devices,
that include one or more processors and computer readable
media.

Each of the stream processing nodes 220A-N processes
events using a stream processing engine 222. The stream
processing engine 222 is a software application that defines a
topology 226 of operations for processing received events.
Thetopology is typically arranged as a directed, acyclic graph
(“DAG”) that includes functional modules each defining one
or more operations to be performed on an event. The func-
tional modules of the topology 226 are connected by logical
channels that can identify respective subsequent functional
modules to receive an event. The multiple functional modules
can be implemented as software modules executing within a
same operating system process on each of the stream process-
ing nodes 220A-N.

Each stream processing node 220A-N of the stream pro-
cessing system 202 typically includes all operations of all
functional modules of the topology 226. Thus, a single event
can be processed according to the stream processing topology

US 9,075,670 B1

5

226 by a single computing node without performing interpro-
cess or inter-node communications.

Each of the stream processing nodes 220A-N has opera-
tional memory 224, which generally includes high-speed
memory designed for fast random access by a processor, e.g.,
dynamic random access memory (DRAM). Each of the
stream processing nodes 220A-N maintains a partition of
context data, with each partition of context data maintained in
operational memory by a same operating system process
executing the stream processing engine 222. For example, the
operating system process can obtain context data for a par-
ticular event and then process the event using the context data
within the same operating system process, e.g., in the same
process of a JAVA virtual machine.

The context data is generally partitioned across the stream
processing nodes 220A-N, with each stream processing node
receiving a particular partition of the context data, e.g., con-
text data 224 A-N. However, some context data can be stored
by each stream processing node if the context data is suffi-
ciently small.

If context data required by a particular functional module
of the topology 226 is not located in operational memory of
the same computing node, the functional module can route
the event to a functional module of a particular computing
node that does have the required context data in operational
memory.

The stream processing system 202 can partition context
data so that particular context data related to a particular event
is likely to be located on a same particular stream processing
node as other context data related to the particular event. For
example, a system can partition context data according to area
codes because users are likely to make phone calls to phone
numbers within a same area code rather than phone numbers
in different area codes. In this way the stream processing
system 202 can avoid providing events to multiple stream
processing nodes unnecessarily.

When the routing system 240 receives an event included in
a raw event stream 210, the routing system 240 routes the
event according to data affinity with the partitions of context
data 224 A-N. Routing by data affinity refers to distributing an
event to a computing node that is likely to maintain context
data related to the event. In some implementations the routing
system can route each received event by obtaining informa-
tion included in each event, and determining a partition of
context data that stores context data related to the obtained
information. For instance, the routing system 240 can obtain
a customer key number included in an event, and determine a
partition of context data that stores context data related to the
particular customer key number. The routing system 240 can
store data identifying partitions of context data with stream
processing nodes storing the respective partition. The routing
system 240 can then provide the event to the stream process-
ing node 220A that stores the partition of context data.

In some implementations, an event can include a data affin-
ity hint. A data affinity hint identifies a partition of context
data that is likely to have context data for the event. In some
implementations a data affinity hint can be metadata included
in an event that identifies a partition of context data. The data
affinity hint can also be information appended to a data tuple
defining an event, or can be information included in a mes-
sage header used to route the event to a particular stream
processing node.

The routing system routes the event 212 to stream process-
ing node 220A. Upon receiving the routed event 212, the
stream processing engine 222 performs the operations iden-
tified by the first functional module to operate on the routed
event 212. After the operations are performed, the logical

20

30

40

45

6

channel connecting the first and second functional modules of
the topology 226 routes the event to the second functional
module. If the data affinity hint indicates that context data for
the event is likely to be included in a different partition of
context data stored on a different computing node, the event
can be routed to a second functional module on the different
computing node.

A logical channel between functional modules can also
modify the data affinity hint in the routed event 212. The
modified data affinity hint informs the stream processing
engine 222 whether the routed event 212 should remain in the
stream processing node 220A, or should be provided to a
different stream processing node. That is, the new data affin-
ity hint can inform the stream processing engine 222 that
context data, e.g., a different type of context data, for the
routed event 212, which is needed for the subsequent func-
tional module, is located in a partition of context data stored
in a different stream processing node.

As shown in FIG. 2, the stream processing node 220A has
determined that context data for the routed event 212 is main-
tained in the stream processing node 220A. The logical chan-
nel might have included an operation to modify the data
affinity hint, however the data affinity hint identified a parti-
tion of context data that is stored in stream processing node
220A. Additionally, the logical channel might not have
included an operation to modify the data affinity hint, so the
routed event 212 would also remain in stream processing
node 220A. The stream processing node 220A provides the
routed event 212 to the remaining functional modules in the
stream processing engine 222, and provides an output of the
stream engine processing 222 to a management node 230.
The management node can then provide the output 216 to a
user device 232.

When the stream processing node 220B receives the routed
event 214, the stream processing engine 222 performs the
operations identified by the first functional module on the
event 214. After the operations are performed, the logical
channel connecting the first and second functional modules
can route the event according to a data affinity hint in the
routed event 214. Upon determining that context data for the
routed event 214 is stored in a different stream processing
node, the stream processing node 220B provides the routed
event 214 to the different stream processing node 220N. Since
each stream processing node includes all functional modules
of the stream processing topology 226, the second functional
module of the different stream processing node 220N can
operate on the routed event 214 to continue the process flow
defined by the topology 226.

The stream processing node 220N then provides an output
218 corresponding to the routed event that was initially
received by the stream processing node 220B to the manage-
ment node 230. The management node 230 can then provide
the output 218 to the user device 232.

FIG. 3 illustrates an event 306 being processed by an
example stream processing system 300. The stream process-
ing system 300 includes multiple connected stream process-
ing nodes 310, e.g., stream processing nodes 310A-N.

The stream processing system 300 receives a raw event
stream 302. The raw event stream 302 can be received by a
routing system 304 over a network, e.g., the Internet. The
routing system 304 routes an event 306 included in the raw
event stream 302 to a stream processing node 310A upon
determining that context data 314 A for the event 306 is likely
to be maintained in operational memory of the stream pro-
cessing node 310A.

In some implementations the event 306 includes a data
affinity hint which the routing system 304 can obtain and use

US 9,075,670 B1

7

to route the event 306. The routing system 304 can determine
a particular partition of context data that includes context for
the event 306, and identify a stream processing node storing
the partition.

In the example of FIG. 3, the routing system has deter-
mined that stream processing node 310A has context data
314A for the event 306. The stream processing node 310A
includes an application 312 identified by a series of functional
modules of a topology, e.g., functional modules A-E. The
application 312 is executed in the same operating system
process, e.g., a JAVA virtual machine process, as the process
storing context data 314 A in operational memory, e.g., ran-
dom access memory, of the stream processing node 310A.

The stream processing node 310A performs operations
identified by functional module A on the event 306. Since the
context data 314A is stored in the same process as the execut-
ing application, the application can obtain context data
quickly and without interprocess communication or inter-
node communication.

Upon completion of the operations in functional module A,
the stream processing node 310A provides the event through
alogical channel to functional module B. The logical channel
includes an operation to modify the data affinity hint included
in the event, informing the stream processing node 310A to
route the event to a different stream processing node 310B. In
some implementations each stream processing node 310A-N
stores information identifying which nodes store respective
partitions of context data. The modified data affinity hint
identifies that the subsequent functional module in the topol-
ogy needs different context data, stored on the stream pro-
cessing node 310B.

The stream processing node 310B receives the event 306
and processes the event 306 using the operations identified by
functional module B and the context data 314B. Upon
completion of the operations in functional module B the event
passes through a logical channel to the next functional mod-
ule. The logical channel has modified the data affinity hint
included in the event 306, so the event is routed to a different
stream processing node 310N.

The stream processing node 310N receives the event 306
and processes the event 306 using the operations identified by
functional module C and the context data 314N. Upon
completion of the operations in functional module C, the
event passes through a logical channel to the next functional
module. As shown, the logical channel has not modified the
data affinity hint included in the event 306, so the event stays
in stream processing node 310N.

The user device 320 receives the output of the application,
e.g., the processed event 306, after the application has com-
pleted processing the remaining functional modules, e.g.,
functional modules D and E, on event 306.

FIG. 4 is a flow chart of an example process for defining a
stream computing topology and associated context data. In
general, a system receives, from a developer, a definition of a
topology of functional modules for processing events and
associated context data. The system can then preload the
context data into operational memory of one or more com-
puting nodes and initialize the functional modules of the
stream computing topology on each of the one or more com-
puting nodes. The process will be described as being per-
formed by an appropriately programmed system of one or
more computers.

The system receives a specification of the stream process-
ing topology and the definitions of the functional modules of
the topology (402). A developer can use a particular stream
processing development framework to define a specification
of the stream computing topology. The developer specifies

25

30

35

40

45

8

the operations to be performed on events by each functional
module of the stream computing topology, as well as the
channels between functional modules in the topology.

The developer can also specify the context data required to
process events by some functional modules. For example, the
developer can specify that some functional modules of the
stream computing topology can make use of context data that
includes customer information for telecommunications cus-
tomers.

The system preloads context data into operational memory
of computing nodes of the stream computing system (404).
The system can preload the context data into operational
memory to give low latency access for functional modules of
the stream computing system.

When the context data is larger than the operational
memory of a single computing node, the system can partition
the context data across multiple computing nodes of the sys-
tem. For example, the system can preload the customer con-
text data by partitioning the customer data according to last
name among multiple computing nodes of the stream pro-
cessing system.

The system deploys functional modules of the stream com-
puting topology on each of the computing nodes of the stream
computing system (406). To reduce latency for processing
events by the stream computing system, the system can
deploy each functional module defined by the developer to
each ofthe computing nodes in the stream processing system.
Thus, an event can be processed according to the stream
computing topology by a single computing node ofthe stream
processing system.

The system can hide implementation details of the stream
computing system from the developer. Thus, the developer
need not specify that all functional modules are deployed on
a same computing node and need not specify that the context
data will be preloaded into operational memory ofthe system.

The system processes events using the stream computing
topology and associated context data (408). After deploying
the functional modules of the stream computing topology and
preloading context data into operational memory of the com-
puting nodes, the system can begin processing events.

FIG. 5 is a flow chart of an example process for processing
events by a stream processing system. In general, a comput-
ing node processes an event according to functional modules
of a stream processing topology using context data stored in
operational memory of the computing node. The process can
be implemented by one or more computer programs installed
on one or more computers. The process will be described as
being performed by a system of one or more appropriately
programmed computers, e.g., the stream processing system
202 of FIG. 2.

The system receives an event at a computing node included
in the system (502). The system can receive an event stream
that includes the event over a network, e.g., the Internet, or
can receive multiple events in a batch. Events are identifiable
occurrences, e.g., a telephone call being placed, a patron
buying coffee at a business, a measured wind speed at a
particular wind turbine. Each event has included information,
e.g., a telephone number, a type of coffee, the price of the
coffee, waiting time of the patron buying coffee.

The system receives the event stream and routes each event
to a particular computing node, e.g., stream processing node
220. Each event is routed according to where context data of
the event is likely to be maintained. In some implementations
each event can include a data affinity hint, which the system
can use to determine a partition of context data, and a com-
puting node maintaining that partition of context data.

US 9,075,670 B1

9

The system processes the event according to a sequence of
functional modules of a stream processing topology (504).
Each computing node of the system includes an application
that includes the functional modules arranged in a stream
processing topology that identify operations to be performed
on the event.

In some implementations, all functional modules of the
stream processing topology are executed within a same oper-
ating system process. Furthermore, each computing node
includes modules for all functional modules of the stream
process topology. Thus, the application can process some
events without routing the events between different comput-
ing nodes.

Each functional module in the stream processing topology
is connected by a logical channel that can identify a subse-
quent functional module in the topology to route the event.
The logical channel can include an operation to modity the
data affinity hint included in the event, identifying that the
subsequent functional module needs a different partition of
context data. The system can perform the operation included
in the logical channel to modify the data affinity hint and
determine whether the different context data is stored on the
computing node, or a different computing node.

The system processes the event at a functional module that
requests context data for the event (506). The functional mod-
ule includes an operation that requests context data to process
the event. For instance, the event can represent a telephone
call being placed from a particular phone number, and the
operation in the functional module can request access to a
user account number associated with the particular phone
number.

Insome implementations, the computing node executes the
application in a same operating system process, e.g., a JAVA
virtual machine process, also maintains the context data
stored in the operational memory.

The system obtains the requested context data from opera-
tional memory (508). Because the context data is maintained
by the same process that is executing the application, the
system can quickly obtain the requested context data, avoid
data locking issues, race conditions, and not have to call and
obtain context data from an outside database.

The system processes the operation using the context data
(510). The system performs the operation in the functional
module on the event using the context data. In performing the
operation on the event, the system can modify the event based
on the particular operation of the functional module.

Some operations may also modify the context data associ-
ated with the event. Thus, when the system accesses the
context data for a subsequent event, the system will retrieve
the modified context data. For example, if the context data
included a count of the total number of telephone calls placed
from a particular user account, the system can modify the
context data by updating the count. Subsequent operations by
functional modules can access the updated count.

The system provides the event to a subsequent functional
module (512). After the operations in the functional module
have completed, the system provides the event to the next
functional module in the stream processing topology through
a logical channel. The logical channel can optionally include
an operation to modify the data affinity hint included in the
event. If the system determines, from the data affinity hint,
that context data for the subsequent functional module is
located in operational memory of a different computing node,
the system can provide the event to the different computing
node. Since each computing node includes the same applica-
tion, the system can provide the event to the same subsequent
functional module.

10

15

20

25

30

35

40

45

50

55

60

65

10

The system processes the event according to the functional
modules included in the stream processing topology, until the
final functional module. After the system processes the final
functional module, the modified event is routed as an output
to a user device.

FIG. 6 illustrates an example process of providing an event
to a different computing node. In general, a system can
receive an event at a computing node, and process the event
according to operations identified in a functional module.
After processing, the computing node can determine that an
operation identified in a subsequent functional module
requires context data that is stored in a different computing
node. The system can route the event to the different comput-
ing node for processing. The process will be described as
being performed by a computing node, e.g., the stream pro-
cessing node 220 of FIG. 2.

The computing node processes an event at a functional
module (602). As described above, each computing node
stores a same application represented as multiple functional
modules that include operations to be performed on events.
The computing node processes the event with the operations
included in the functional module.

After completion of the operations in the functional mod-
ule, the computing node provides the event to a logical chan-
nel that connects the functional module to a subsequent func-
tional module. The logical channel can include operations to
modify a data affinity hint included in the event. As described
above, the data affinity hint is an identifier used by the com-
puting node to determine a particular computing node storing
context data needed by the subsequent functional module.
Context data can be partitioned across the multiple comput-
ing nodes, with each computing node including a partition.

The computing node uses the data affinity hint to determine
a particular partition that includes context data for the event.
The computing node can obtain the data affinity hint and
identify the particular computing node storing that partition
using information stored on each computing node. In some
implementations the information can be a mapping between
respective partitions of context data and identifiers of com-
puting nodes.

The computing node modifies the data affinity hint
included in the event (604). The computing node provides the
event to a logical channel, and performs an operation to
modify the data affinity hint.

In some implementations the operation included in the
logical channel can identify the type of context data needed,
and the computing node can determine a mapping between a
partition of the needed context data and the event. The com-
puting node can determine the mapping by computing a hash
function of data included in the event, e.g., a telephone num-
ber that placed a call, the name or first letter of a patron that
ordered coffee, and obtaining a map of the data to a number.
The number can correspond to the identifier of a partition of
context data. Alternatively, the system can first modify the
number by taking the modulus of the number with a particular
selected constant. The result of the modulus can correspond
to the identifier of the partition.

In some other implementations, the system can determine
the mapping by the computing node computing the modulus
of the value of a particular data attribute of the event with a
number of total partitions of context data.

The computing node determines the mapping and then
identifies the computing node that stores the partition. The
computing node can access information identifying comput-
ing nodes that store particular partitions of context data.

The system can then modify the data affinity hint of the
event to correspond to the determined partition identifier. For

US 9,075,670 B1

11

example, the system can modify the data affinity hint by
modifying a tuple of the event corresponding to the data
affinity hint or by moditying metadata of the event.

From this information, the computing node can determine
whether the event should be routed to a different computing
node. The system, e.g., stream processing node 220, can have
different types of context data needed for an event stored in
the same computing node. In this way the system can reduce
the number of events that are moved between computing
nodes, increasing the throughput of the system. However if
the computing node determines that the partition of context
data is stored in a different computing node, the computing
node then provides the event to the different computing node.

The computing node provides the event to a different com-
puting node (606). As described above, upon determining that
the context data needed for a subsequent functional module is
stored in a different computing node, the computing node
provides the event. Since each computing node includes the
same application, the event is provided to the subsequent
functional module and processed with context data stored in
operational memory of the computing node.

The above discussion describes that events in the event
stream can be routed between different computing nodes,
e.g., based on data affinity of each event. However, in some
implementations a subset of the event stream can be routed to
an external computer, e.g., over a network. The routing sys-
tem, e.g., routing system 240, or a computing node, e.g.,
stream processing node 220, can route a subset of events
based on specific criteria. The specific criteria can include
determining that metadata, or data included in a tuple defining
the event, satisfies a specific relationship or function. For
example, one or more phone call events can be routed to an
external system upon determining that the phone number
matches a particular number, an area code, a time stamp, and
SO O1.

Embodiments of the subject matter and the functional
operations described in this specification can be implemented
in digital electronic circuitry, in tangibly-embodied computer
software or firmware, in computer hardware, including the
structures disclosed in this specification and their structural
equivalents, or in combinations of one or more of them.
Embodiments of the subject matter described in this specifi-
cation can be implemented as one or more computer pro-
grams, i.e., one or more modules of computer program
instructions encoded on a tangible non-transitory program
carrier for execution by, or to control the operation of, data
processing apparatus. Alternatively or in addition, the pro-
gram instructions can be encoded on an artificially-generated
propagated signal, e.g., a machine-generated electrical, opti-
cal, or electromagnetic signal, that is generated to encode
information for transmission to suitable receiver apparatus
for execution by a data processing apparatus. The computer
storage medium can be a machine-readable storage device, a
machine-readable storage substrate, a random or serial access
memory device, or a combination of one or more of them.

The term “data processing apparatus”™ encompasses all
kinds of apparatus, devices, and machines for processing
data, including by way of example a programmable proces-
sor, a computer, or multiple processors or computers. The
apparatus can include special purpose logic circuitry, e.g., an
FPGA (field programmable gate array) or an ASIC (applica-
tion-specific integrated circuit). The apparatus can also
include, in addition to hardware, code that creates an execu-
tion environment for the computer program in question, e.g.,
code that constitutes processor firmware, a protocol stack, a
database management system, an operating system, or a com-
bination of one or more of them.

10

15

20

25

30

35

40

45

50

55

60

65

12

A computer program (which may also be referred to or
described as a program, software, a software application, a
module, a software module, a script, or code) can be written
in any form of programming language, including compiled or
interpreted languages, or declarative or procedural lan-
guages, and it can be deployed in any form, including as a
stand-alone program or as a module, component, subroutine,
or other unit suitable for use in a computing environment. A
computer program may, but need not, correspond to a filein a
file system. A program can be stored in a portion of a file that
holds other programs or data, e.g., one or more scripts stored
in a markup language document, in a single file dedicated to
the program in question, or in multiple coordinated files, e.g.,
files that store one or more modules, sub-programs, or por-
tions of code. A computer program can be deployed to be
executed on one computer or on multiple computers that are
located at one site or distributed across multiple sites and
interconnected by a communication network.

As used in this specification, an “engine,” or “software
engine,” refers to a software implemented input/output sys-
tem that provides an output that is different from the input. An
engine can be an encoded block of functionality, such as a
library, a platform, a software development kit (“SDK”), oran
object. Each engine can be implemented on any appropriate
type of computing device, e.g., servers, mobile phones, tablet
computers, notebook computers, music players, e-book read-
ers, laptop or desktop computers, PDAs, smart phones, or
other stationary or portable devices, that includes one or more
processors and computer readable media. Additionally, two
or more of the engines may be implemented on the same
computing device, or on different computing devices.

The processes and logic flows described in this specifica-
tion can be performed by one or more programmable com-
puters executing one or more computer programs to perform
functions by operating on input data and generating output.
The processes and logic flows can also be performed by, and
apparatus can also be implemented as, special purpose logic
circuitry, e.g., an FPGA (field programmable gate array) or an
ASIC (application-specific integrated circuit).

Computers suitable for the execution of a computer pro-
gram include, by way of example, can be based on general or
special purpose microprocessors or both, or any other kind of
central processing unit. Generally, a central processing unit
will receive instructions and data from a read-only memory or
arandom access memory or both. The essential elements of a
computer are a central processing unit for performing or
executing instructions and one or more memory devices for
storing instructions and data. Generally, a computer will also
include, or be operatively coupled to receive data from or
transfer data to, or both, one or more mass storage devices for
storing data, e.g., magnetic, magneto-optical disks, or optical
disks. However, a computer need not have such devices.
Moreover, a computer can be embedded in another device,
e.g., amobile telephone, a personal digital assistant (PDA), a
mobile audio or video player, a game console, a Global Posi-
tioning System (GPS) receiver, or a portable storage device,
e.g., a universal serial bus (USB) flash drive, to name just a
few.

Computer-readable media suitable for storing computer
program instructions and data include all forms of non-vola-
tile memory, media and memory devices, including by way of
example semiconductor memory devices, e.g.,, EPROM,
EEPROM, and flash memory devices; magnetic disks, e.g.,
internal hard disks or removable disks; magneto-optical
disks; and CD-ROM and DVD-ROM disks. The processor
and the memory can be supplemented by, or incorporated in,
special purpose logic circuitry.

US 9,075,670 B1

13

To provide for interaction with a user, embodiments of the
subject matter described in this specification can be imple-
mented on a computer having a display device, e.g., a CRT
(cathode ray tube) or LCD (liquid crystal display) monitor,
for displaying information to the user and a keyboard and a
pointing device, e.g., amouse or a trackball, by which the user
can provide input to the computer. Other kinds of devices can
be used to provide for interaction with a user as well; for
example, feedback provided to the user can be any form of
sensory feedback, e.g., visual feedback, auditory feedback, or
tactile feedback; and input from the user can be received in
any form, including acoustic, speech, or tactile input. In addi-
tion, a computer can interact with a user by sending docu-
ments to and receiving documents from a device that is used
by the user; for example, by sending web pages to a web
browser on a user’s client device in response to requests
received from the web browser.

Embodiments of the subject matter described in this speci-
fication can be implemented in a computing system that
includes a back-end component, e.g., as a data server, or that
includes a middleware component, e.g., an application server,
or that includes a front-end component, e.g., a client com-
puter having a graphical user interface or a Web browser
through which a user can interact with an implementation of
the subject matter described in this specification, or any com-
bination of one or more such back-end, middleware, or front-
end components. The components of the system can be inter-
connected by any form or medium of digital data
communication, e.g., a communication network. Examples
of communication networks include a local area network
(“LAN”) and a wide area network (“WAN™), e.g., the Inter-
net.

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other.

While this specification contains many specific implemen-
tation details, these should not be construed as limitations on
the scope of any invention or of what may be claimed, but
rather as descriptions of features that may be specific to
particular embodiments of particular inventions. Certain fea-
tures that are described in this specification in the context of
separate embodiments can also be implemented in combina-
tionin a single embodiment. Conversely, various features that
are described in the context of a single embodiment can also
be implemented in multiple embodiments separately or in any
suitable subcombination. Moreover, although features may
be described above as acting in certain combinations and even
initially claimed as such, one or more features from a claimed
combination can in some cases be excised from the combi-
nation, and the claimed combination may be directed to a
subcombination or variation of a subcombination.

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain circum-
stances, multitasking and parallel processing may be advan-
tageous. Moreover, the separation of various system modules
and components in the embodiments described above should
not be understood as requiring such separation in all embodi-
ments, and it should be understood that the described program
components and systems can generally be integrated together
in a single software product or packaged into multiple soft-
ware products.

10

20

25

30

35

40

45

14

Particular embodiments of the subject matter have been
described. Other embodiments are within the scope of the
following claims. For example, the actions recited in the
claims can be performed in a different order and still achieve
desirable results. As one example, the processes depicted in
the accompanying figures do not necessarily require the par-
ticular order shown, or sequential order, to achieve desirable
results. In certain implementations, multitasking and parallel
processing may be advantageous.

What is claimed is:

1. A method comprising:

receiving an event at a computing node of a stream pro-

cessing system, wherein the stream processing system
comprises one or more computing nodes and data rep-
resenting a stream processing topology of functional
modules, wherein each functional module defines one or
more operations to be performed on an event and an
output destination for the event, and wherein all func-
tional modules of the stream processing topology are
installed on each of the computing nodes;

ata particular functional module of the topology, determin-

ing that an operation requests access to context data
related to the event based on a data attribute of the event,
wherein the context data is partitioned among the one or
more computing nodes, and wherein each partition of
context data is stored in operational memory of the
respective computing node;

obtaining, from the operational memory of the computing

node, the context data related to the event;

processing the operation of the particular functional mod-

ule using the context data obtained from the operational
memory of the computing node including generating a
modified event; and

providing the modified event to a subsequent functional

module according to the topology of functional mod-
ules.

2. The method of claim 1, wherein each functional module
of the stream processing topology executes within a same
operating system process of the computing node of the stream
processing system.

3. The method of claim 1, wherein processing the operation
of the particular functional module using the context data
comprises modifying the context data in operational memory
of the computing node.

4. The method of claim 3, further comprising:

receiving a different second event at the computing node of

the stream processing system;
at the particular functional module, determining that the
operation for the second event requests access to the
modified context data related to the second event based
on a particular data attribute of the second event;

obtaining, from the operational memory of the computing
node, the modified context data; and

processing the operation of the particular functional mod-

ule using the modified context data obtained from the
operational memory of the computing node.

5. The method of claim 1, further comprising:

receiving a different second event at the computing node of

the stream processing system;

at the particular functional module, determining that the

operation requests access to context data related to the
different event based on a particular data attribute of the
different second event;

determining that the requested context data is maintained

in a partition stored on a different computing node; and
providing the second event to the particular functional
module the different computing node.

US 9,075,670 B1

15

6. The method of claim 1, further comprising:

maintaining, by the computing node, modules for the func-

tional modules of the stream processing topology and
the context data within a same operating system process.

7. The method of claim 1, further comprising:

receiving, at the stream processing system, the event;

determining a computing node maintaining a partition of

context data related to the event; and

routing the event to the determined computing node.

8. The method of claim 7, wherein determining a comput-
ing node comprises:

processing an operation to modify a data affinity hint in the

event;

determining, from the modified data affinity hint, an iden-

tifier of a partition of context data; and

determining, from the identifier of the partition of context

data, a different computing node storing the partition of
context data in operational memory.

9. A stream processing system comprising:

one or more computing nodes and data representing a

stream processing topology of functional modules,
wherein each functional module defines one or more
operations to be performed on an event and an output
destination for the event, and wherein all functional
modules of the stream processing topology are installed
on each of the computing nodes, and wherein the one or
more computing nodes are operable to perform opera-
tions comprising:

receiving an event at a computing node of the stream pro-

cessing system;

at a particular functional module of the topology, determin-

ing that an operation requests access to context data
related to the event based on a data attribute of the event,
wherein the context data is partitioned among the one or
more computing nodes, and wherein each partition of
context data is stored in operational memory of the
respective computing node;

obtaining, from the operational memory of the computing

node, the context data related to the event;

processing the operation of the particular functional mod-

ule using the context data obtained from the operational
memory of the computing node including generating a
modified event; and

providing the modified event to a subsequent functional

module according to the topology of functional mod-
ules.

10. The stream processing system of claim 9, wherein each
functional module of the stream processing topology
executes within a same operating system process of the com-
puting node of the stream processing system.

11. The stream processing system of claim 9, wherein
processing the operation of the particular functional module
using the context data comprises modifying the context data
in operational memory of the computing node.

12. The stream processing system of claim 11, wherein the
operations further comprise:

receiving a different second event at the computing node of

the stream processing system;
at the particular functional module, determining that the
operation for the second event requests access to the
modified context data related to the second event based
on a particular data attribute of the second event;

obtaining, from the operational memory of the computing
node, the modified context data; and

processing the operation of the particular functional mod-

ule using the modified context data obtained from the
operational memory of the computing node.

5

10

15

20

25

30

35

40

45

50

55

16

13. The stream processing system of claim 9, wherein the

operations further comprise:

receiving a different second event at the computing node of
the stream processing system;

at the particular functional module, determining that the
operation requests access to context data related to the
different event based on a particular data attribute of the
different second event;

determining that the requested context data is maintained
in a partition stored on a different computing node; and

providing the second event to the particular functional
module the different computing node.

14. The stream processing system of claim 9, wherein the

operations further comprise:

maintaining, by the computing node, modules for the func-
tional modules of the stream processing topology and
the context data within a same operating system process.
15. The stream processing system of claim 9, wherein the

operations further comprise:

receiving, at the stream processing system, the event;

determining a computing node maintaining a partition of
context data related to the event; and

routing the event to the determined computing node.

16. The stream processing system of claim 15, wherein

determining a computing node comprises:

processing an operation to modify a data affinity hint in the
event;

determining, from the modified data affinity hint, an iden-
tifier of a partition of context data; and

determining, from the identifier of the partition of context
data, a different computing node storing the partition of
context data in operational memory.

17. A computer program product, encoded on one or more

non-transitory computer storage media, comprising instruc-
tions that when executed by one or more computers cause the
one or more computers to perform operations comprising:

receiving an event at a computing node of a stream pro-
cessing system, wherein the stream processing system
comprises one or more computing nodes and data rep-
resenting a stream processing topology of functional
modules, wherein each functional module defines one or
more operations to be performed on an event and an
output destination for the event, and wherein all func-
tional modules of the stream processing topology are
installed on each of the computing nodes;

ata particular functional module of the topology, determin-
ing that an operation requests access to context data
related to the event based on a data attribute of the event,
wherein the context data is partitioned among the one or
more computing nodes, and wherein each partition of
context data is stored in operational memory of the
respective computing node;

obtaining, from the operational memory of the computing
node, the context data related to the event;

processing the operation of the particular functional mod-
ule using the context data obtained from the operational
memory of the computing node including generating a
modified event; and

providing the modified event to a subsequent functional
module according to the topology of functional mod-
ules.

18. The computer program product of claim 17, wherein

each functional module of the stream processing topology
executes within a same operating system process of the com-

65 puting node of the stream processing system.

19. The computer program product of claim 17, wherein

processing the operation of the particular functional module

US 9,075,670 B1
17

using the context data comprises modifying the context data
in operational memory of the computing node.
20. The computer program product of claim 17, wherein
the operations further comprise:
receiving a different second event at the computing node of 5
the stream processing system;
at the particular functional module, determining that the
operation requests access to context data related to the
different event based on a particular data attribute of the
different second event; 10
determining that the requested context data is maintained
in a partition stored on a different computing node; and
providing the second event to the particular functional
module the different computing node.

#* #* #* #* #* 15

